Формирование компетенций на уроках математики - Компетентностный подход - Каталог статей - Сайт учителя математики Алешко Н.И.
Пятница, 09.12.2016, 02:59
Приветствую Вас Гость

Форма входа

Меню сайта
Категории раздела
Поиск
Новые материалы
12-летнее образование
Подготовка к ГИА


Дистанционный тренинг


* * *
Задачи,решения,тесты
видеолекции,электронные пособия
Учительский ФОРУМ
On-line переводчик
Онлайн переводчик SANASOFT

Наш опрос
На уроках Вы используете
Всего ответов: 671
Статистика
Online













Онлайн всего: 2
Гостей: 2
Пользователей: 0
Главная » Статьи » Компетентностный подход

Формирование компетенций на уроках математики


   


   Математическая компетенция — это способность структурировать данные (ситуацию), вычленять математические отношения, создавать математическую модель ситуации, анализировать и преобразовывать ее, интерпретировать полученные результаты. Иными словами, математическая компетенция учащегося способствует адекватному применению математики для решения возникающих в повседневной жизни проблем.

Совокупность компетенций, наличие знаний и опыта, необходимых для эффективной деятельности в заданной предметной области, называют компетентностью.


Компетентность проявляется в случае применения знаний и умений при решении задач, отличных от тех, в которых эти знания усваивались.

В стандартах среднего (полного) общего образования (базовый и профильный уровни) сформулированы следующие требования к уровню подготовки выпускников, которые принято использовать для характеристики уровня математической компетентности: "Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
  • построения и исследования простейших математических моделей;
  • описания и исследования с помощью функций реальных зависимостей, представления их графически;
  • интерпретации графиков реальных процессов;
  • -решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, анализа информации статистического характера;
  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства”.

Анализ возникающих в повседневной жизни ситуаций, для разрешения которых требуются знания и умения, формируемые при обучении математике, показывает, что перечень необходимых для этого предметных умений невелик:

  • умение проводить вычисления, включая округление и оценку (прикидку) результатов действий использовать для подсчетов известные формулы;
  • умение извлечь и проинтерпретировать информацию, представленную в различной форме (таблиц, диаграмм, графиков, схем и др.);
  • умение применять знание элементов статистики и вероятности для характеристики несложных реальных явлений и процессов;
  • умение вычислять длины, площади и объемы реальных объектов при решении практических задач.


Для проверки компетентности учащихся на международном уровне используются два типа задач - чисто математические и контекстные (практико-ориентированные).


К контекстным относят задачи, у которых контекст обеспечивает подлинные условия для использования математики при решении, оказывает влияние на решение и его интерпретацию. Не исключается использование задач, у которых условие является гипотетическим, если оно не слишком отдалено от реальной ситуации.

Центр тяжести при решении задач такого типа лежит в области построения самой модели реальной ситуации. Именно составление модели требует высокого уровня математической подготовки и является результатом обучения, который целесообразно назвать общекультурным (общеобразовательным).


Уровни математической компетентности

Принято три уровня математической компетентности: уровень воспроизведения, уровень установления связей, уровень рассуждений.

Первый уровень (уровень воспроизведения) — это прямое применение в знакомой ситуации известных фактов, стандартных приемов, распознавание математических объектов и свойств, выполнение стандартных процедур, применение известных алгоритмов и технических навыков, работа со стандартными, знакомыми выражениями и формулами, непосредственное выполнение вычислений.

Второй уровень (уровень установления связей) строится на репродуктивной деятельности по решению задач, которые, хотя и не являются типичными, но все же знакомы учащимся или выходят за рамки известного лишь в очень малой степени. Содержание задачи подсказывает, материал какого раздела математики надо использовать и какие известные методы применить. Обычно в этих задачах присутствует больше требований к интерпретации решения, они предполагают установление связей между разными представлениями ситуации, описанной в задаче, или установление связей между данными в условии задач.

Третий уровень (уровень рассуждений) строится как развитие предыдущего уровня. Для решения задач этого уровня требуются определенная интуиция, размышления и творчество в выборе математического инструментария, интегрирование знаний из разных разделов курса математики, самостоятельная разработка алгоритма действий. Задания, как правило, включают больше данных, от учащихся часто требуется найти закономерность, провести обобщение и объяснить или обосновать полученные результаты.

В едином государственном экзамене последовательно реализуется проверка всех трех уровней математической компетентности школьников.

Однако компетентность нельзя трактовать только как сумму предметных знаний, умений и навыков. Это — приобретаемое в результате обучения и жизненного опыта новое качество, увязывающее знания и умения учащегося со спектром интегральных характеристик качества подготовки, в том числе и со способностью применять полученные знания и умения к решению проблем, возникающих в повседневной практике.


Успешное выполнение контекстных заданий может быть обеспечено только при ориентации учебного процесса на решение подобных задач.


Категория: Компетентностный подход | Добавил: Natalja (01.07.2009)
Просмотров: 7694
Образование в XXI веке
Информатизация образования
Интернет и школа
Применение IT
Interactive technologies
e-Learning Portal KZ
e-Learning
ActivLearning


Курсы ActivLearning помогут вам освоить новейшее программное обеспечение ActivInspire.

* * *
ActivLearning предлагает вам выбор тренингов, в том числе онлайн тренинги и курсы по профессиональному развитию.
Полезные ссылки
Корзина
Ваша корзина пуста